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Abstract

We study how manufacturing establishments in India adapt to flood risk. Combining
establishment-level data with geo-coded flood records and regional economic indica-
tors, we examine how production and investment decisions respond to flood events
conditional on historical exposure. We find that investment is more resilient in high-
risk areas, consistent with forward-looking adaptation. To rationalize these findings,
we propose a firm dynamics model featuring flood risk and private insurance to floods
through a flood preventing capital. To overcome the course of dimensionality in this
dynamic spatial model with aggregate uncertainty, we resort to Deep Learning tech-
niques. We employ the model to quantify the aggregate economic impact of floods
and evaluate the effectiveness of adaptation in mitigating climate-induced damages,

and find that the proposed mechanism can replicate the patterns in the data.
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1 Introduction

As global temperatures rise beyond 1°C above pre-industrial levels, the severity and fre-
quency of extreme weather events are expected to increase.! Historically, some regions
have been more frequently exposed to such events, prompting firms operating in those
areas to adapt their economic activities to the recurring threat of natural disasters. While
a growing literature has examined the role of plant location and supply chain reorgani-
zation as adaptation strategies, we still know relatively little about how firms undertake
private investments in adaptation aimed at mitigating the economic impact of extreme
weather events. A more detailed understanding of such investments is essential for an-
ticipating where climate-related damages will be most severe and for designing effective
policy responses that reduce the long-run costs of climate change.

Among the various extreme weather events, floods are particularly damaging. In India
alone, they result in the loss of approximately 1,600 lives annually and cause economic
damages equivalent to 0.2% of GDP each year (National Disaster Management Authority,
Government of India, 2023). Floods occur recurrently during the monsoon season; while
their exact timing and location are difficult to predict, some regions have historically been
more exposed than others. This setting provides a natural context to study adaptation:
firms operating in flood-prone areas can anticipate the likelihood of recurrent floods and
make forward-looking investments to mitigate their impact. If firms adapt based on local
flood recurrence, then we should expect a given flood to have a larger economic impact
in locations where floods are historically rare and, correspondingly, where adaptation is
limited.

In the first part of the paper, we study the dynamic causal effects of extreme and severe
floods on Indian manufacturing production and investment by constructing a panel of
establishments from the Annual Survey of Industries (ASI) for the period 2000-2007. The
ASI provides detailed balance sheet data and district-level identifiers, which we merge
with geocoded flood records from the Dartmouth Flood Observatory (DFO). Floods in
this setting arise from various meteorological and hydrological phenomena and are likely
exacerbated by climate change. These events can disrupt production through multiple
channels, including direct damage to facilities, impediments to the movement of goods
and labor, and broader supply chain disruptions. Crucially, the timing and location of
tflood events are plausibly exogenous to local industrial dynamics, allowing for credible
identification. In addition, the availability of historical flood data prior to our sample
period enables us to assess whether the economic impact of floods varies with long-run

1See the IPCC Sixth Assessment Report (Portner et al., 2022).



exposure, providing insight into firms” adaptive responses to climate risk.

Using an event-study design, we document that the impact of floods on manufactur-
ing establishments depends crucially on a district’s historical exposure to such events. In
districts with low pre-2000 flood exposure, we find that severe or extreme floods lead to
persistent declines in both output and capital accumulation, with effects that grow over
time. In contrast, establishments located in historically flood-prone districts experience
no significant output losses and, if anything, respond with increased investment in capi-
tal following a flood event. These findings suggest that firms operating in high-exposure
regions may have adapted more effectively to climate risk—either through physical re-
silience, supply chain adjustments, or precautionary investment—thereby dampening the
adverse economic consequences of future floods.

To rationalize these findings, we propose a firm dynamics dynamic spatial model a
la Khan and Thomas (2008). In the model economy, there exist multiple locations with
heterogeneous exposure to flood risk, with some regions being more likely to experience a
flood than others. Upon a flood, firms in the affected locations experience a destruction of
their stock of production capital and production. To privately insure against these extreme
climate events, firms are able to invest in a flood preventing capital. Investing in this capital
allows the firms to mitigate the damages caused by flooding.

We take this model to an economy with two regions, where the flood probabilities are
estimated from the data and the firm side employs a standard firm-dynamics calibration.
We find that firms in the Risky Region invest more in the flood preventing capital than their
counterparts in the Safer Region. This necessity to invest more heavily in flood preventing
capital in the Risky Region drains the resources of firms at the risky-steady state, and their
discounted sum of profits is lower than in the Safer Region. However, this investment
in the adaptation mechanism provides a key benefit. When employing the model as a
laboratory to study the responses of both economies to a flood shock, we find that all the
aggregates of interest (including capital and production) experience larger declines in
the Safer Region. Thus, the proposed flood preventing accumulation mechanism is able

to rationalize the findings in the data.

Related Literature

First, this paper contributes to a growing literature on the effects of floods on output and
investment. In the context of coastal flooding, Desmet et al. (2021) incorporate sea level
rise projections into a dynamic spatial model with endogenous investment and migration,

while Balboni (2025) studies the role of infrastructure networks in shaping the impact of



flooding in Vietnam. For the United States, Jia et al. (2025) analyze the macroeconomic
implications of changing flood risk, and Pang and Sun (2024) examine how post-hurricane
relief policies influence mobility decisions. In India, Pelli et al. (2023) document reallo-
cation of output and capital toward better-performing industries following cyclones, Rao
et al. (2022) highlight sectoral heterogeneity in the effects of excess rainfall, and Hossain
(2020) shows that labor reallocates toward the informal sector after floods. We contribute
to this literature by documenting that the economic impact of severe floods on manufactur-
ing establishments in India is significantly larger in districts with low historical exposure.
Our identification strategy leverages the difference-in-differences estimator proposed by
De Chaisemartin and d’Haultfoeuille (2024), which accounts for heterogeneous and dy-
namic treatment effects. Relatedly, Gandhi et al. (2022) find that cities with greater histor-
ical flood exposure are less affected by current events, consistent with our interpretation
of adaptation in the manufacturing sector.

Second, this paper also contributes to a recent set of studies on firm-level adaptation to
climate change. A number of recent papers emphasize the role of supply chain reorganiza-
tion: Pankratz and Schiller (2024) show that customers terminate trade relationships when
suppliers are hit by extreme weather events, Castro-Vincenzi et al. (2024) find that firms
diversify input purchases in response to flood risk, and Balboni et al. (2024) document
that firms adjust to climate disruptions by choosing safer transport routes. Multinational
firms in Castro-Vincenzi (2024) adapt by selecting plant locations and capacities to hedge
against flood-related disruptions, while Albert et al. (2024) examine how labor and capital
reallocate in response to drought in Brazil. Public investment by local authorities in flood
defence mitigates the impact of floods in Ficarra and Mari (2025). In the Indian manufac-
turing context, Somanathan et al. (2021) show that air-conditioning mitigates productivity
losses from extreme temperatures. Another adaptation channel is given by the investment
into specific forms of capital that reduce the vulnerability to floods. Fried (2022) considers
this type of investment in the US, focusing on idiosyncratic flood shocks. Compared to her
work, we introduce aggregate uncertainty and document empirically the heterogeneous
impact of floods depending on previous exposure in an emerging economy.

Lastly, this paper is related to the emerging literature advocating for the use of Deep
Learning in order to solve complex DSGE models with aggregate uncertainty and rich
individual heterogeneity. Solving this class of models is computationally infeasible due
to the course of dimensionality when employing traditional methods such as Krusell and
Smith (1998). Several papers have provided methodological contributions, including Maliar
et al. (2021), Han et al. (2021), Kahou et al. (2021) and Azinovic et al. (2022). The main
idea of these methods is to construct Neural Network approximators for the policy and



value functions of interest, thus avoiding the curse of dimensionality as Neural Networks
are trained by sampling data, which scales linearly in the number of dimensions. There
already exists a literature implementing these methods in the context of climate-related
DSGE models such as Pang and Sun (2024), who study the welfare impact of U.S. diaster
relief policies. In this paper, we employ these methodologies in a dynamic spatial model
with aggregate flood uncertainty and provide an implementation of Han et al. (2021) with
multiple controls and auxiliary Neural Network approximators for equilibrium prices.

The remainder of the paper is structured as follows. First, section 2 presents the data
and the obtained empirical results. Secondly, section 3 discusses the proposed model.
Third, section 4 shows the employed calibration and solution methodology. Fourth, sec-
tion 5 presents the results of the model, including the risky steady-state investment in
each type of capital by region and the obtained IRFs to a flood shock. Lastly, section 6
concludes.

2 Empirical Evidence

In this section, we estimate the effect of extreme and severe floods on Indian manufac-
turing production and investment using detailed plant-level data between 2000-2019 and
data on historical floods since 1985.

2.1 Data
2.1.1 Panel of Manufacturing Establishments

To analyze the impact of floods on firm-level outcomes, we use data from the Annual
Survey of Industries (ASI), the most comprehensive panel available for registered man-
ufacturing establishments in India. The ASI, administered by the Government of India,
covers all large factories (those employing more than 100 workers) and a rotating random
sample of roughly one-fifth of smaller registered plants under the Indian Factories Act.
Large establishments are surveyed annually, while smaller ones appear in the sample on
a staggered basis. The unit of observation is the establishment (referred to as a “factory”
in ASI documentation).

While the ASI cross-sectional files contain district identifiers, these are absent from
the panel dataset. To address this, we follow the approach of Martin et al. (2017), merg-
ing the cross-sectional and panel datasets to recover district-level identifiers. Our analysis
uses data from 2000-01 to 2007-08, the period for which this matching is feasible. The
ASI provides rich annual data on key establishment-level variables, including total out-
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put, fixed assets, debt, cash holdings, inventories, input expenditures, and employment,
disaggregated by production and non-production workers.

Our primary variables of interest will be total output and capital. Total output is de-
fined as the ex-factory value? of products and by-products manufactured, in addition to a
range of other receipts. Capital is measured as the depreciated value of fixed assets—land,
buildings, plant, and machinery—owned by the establishment on the final day of the ac-
counting year.

Over time, the Government of India has reorganized administrative boundaries and
updated industry classifications. Specifically, district boundaries have been split into smaller
units, and the industrial classification system has transitioned from NIC-1998 to NIC-2004
and NIC-2008. To ensure consistency in geographic and industry identifiers across years,
we adopt the concordance tables developed by Martin et al. (2017). Using these map-
pings, we construct a balanced panel of 478 constant-boundary districts, each of which
has at least one manufacturing establishment observed during our study period.

2.1.2 Flood Events

We obtain data on historical flood events from the Global Active Archive of Large Flood Events
maintained by the Dartmouth Flood Observatory (DFO). The DFO compiles this archive
using a range of sources, including news reports, government bulletins, satellite imagery,
and remote sensing technologies. Each entry is associated with an “affected area” map
that delineates the geographic extent of a discrete flood event.

We use these map outlines to perform a geospatial join, assigning each flood event to
one or more districts in India. For each event, the DFO records the estimated start and end
dates, the underlying causes, the geographic footprint, and several indicators of severity
and damage. The archive begins in 1985 and is continuously updated.

In our analysis, we focus on the most economically consequential floods. Specifically,
we use the DFO’s severity scale, which ranges from 1.0 to 2.0 in increments of 0.5, and
concentrate on events classified as either severe or extreme. These categories are defined

as follows:

1. Severe floods (Severity = 1.5):

e Estimated worldwide recurrence interval between 20 and 100 years, and/or

2The ex-factory value includes the net sale value (inclusive of subsidies) of all products and by-products
manufactured, as well as other receipts such as income from non-industrial services rendered, contract
work using externally supplied materials, the value of electricity produced and sold, sale value of resold
goods, additions to inventories of semi-finished goods, and own-account construction.



e Local recurrence interval of 10-20 years with a large geographic footprint (>5,000
km?)

2. Extreme floods (Severity = 2.0):

e Estimated worldwide recurrence interval exceeding 100 years

Building on the DFO flood severity classification, we construct extensive and intensive
margin measures to quantify flood exposure at the district level. For the extensive margin,
we define a set of binary indicators equal to one if at least one severe or extreme flood (sever-
ity > 1.5) in a given year affects more than 50%? of a district’s area, and zero otherwise.
These indicators are assigned uniformly to all establishments within the affected district,
based on their geographic location. For the intensive margin, we construct count variables
capturing the number of severe or extreme floods in a given year that cover more than 50%
(or 100%) of the district area. Applying these definitions, we identify 15 district-level se-
vere/extreme flood events in India between 2000 and 2007.

Figure 1 presents the geographic distribution of flood exposure across Indian districts,
both during our sample period and over a longer historical horizon. The top panels display
exposure to all recorded flood events, while the bottom panels focus on severe and extreme
floods, as defined earlier. During the 2000-2007 period, the northeastern and western
regions experienced the highest frequency of high-severity floods. Historically, significant
flood activity is also observed in the northern and southern regions. We exploit this spatial

variation in flood exposure as part of our event study identification strategy.

2.1.3 Descriptive Statistics

Table 1 reports the mean and standard deviation of our main establishment-level vari-
ables: total output (y) and capital stock (k), along with some other relevant measures
of labor input (/), labor productivity (Ip) and wages (w). Summary statistics cover the
period 2000-2007 and are shown separately for establishments located in districts that ex-
perienced at least one severe or extreme flood (as defined by our extensive margin measure)
and those in unaffected districts. Column (1) presents the mean and standard deviation
for firms in flood-affected districts, while Column (2) reports the same for unaffected ar-
eas. Column (3) shows the difference in means between the two groups, along with the

corresponding ¢-statistic from a mean comparison test.

3As a robustness check, we re-estimate our main specifications using an alternative definition of flood expo-
sure, where the binary indicators equal one only if a flood covers 100% of a district’s area in a given year.
The main qualitative results remain robust to this stricter definition.



Figure 1: Exposure to floods in Indian districts across time

Floods >50% of district, 1985-1999 Floods >50% of district, 2000-2007

Notes: District-level flood exposure based on events that affected more than 50% of a district’s area. The top
panels display exposure to all recorded flood events, while the bottom panels focus on severe and extreme
floods, as defined in the main text. The left column corresponds to the period 1985-1999, and the right

column to the period 2000-2007. Source: ML Infomap, the Dartmouth Flood Observatory and authors” own
calculations.

Table 1: Summary statistics: Firms in districts affected or not by severe/extreme floods

@ @) ©)
S/EFlood No S/E Flood Diff.
Mean SD Mean SD b t
y 1699 229 1691 223 -0.08** (-5.86)
k 15.28 263 1529 261 0.01 (0.41)
1 395 149 3098 1.46 0.03* (3.15)
Ip 13.04 148 1293 147 -011" (-12.20)
w 1054 085 1053 0.82 -0.00 (-0.45)
Observations 31,119 202,001 233,120

Only 13.34% of establishments in our sample are located in districts affected by at least
one severe or extreme flood during our period of analysis. Firms in flood-affected districts
display statistically significantly higher average total output (y) and labor productivity
(Ip), with magnitudes of 0.08 and 0.11 log points, respectively, both significant at the 1%



level. Average employment (/) is modestly but significantly lower—by 0.03 log points—at
the 5% level. In contrast, we find no statistically significant differences in average capital
stock (k) or wages (w) across the two groups.

Standard deviations for all five variables are consistently higher among establishments
in flood-affected districts, suggesting greater within-group heterogeneity. This may reflect
differential exposure, variation in adaptation capacity, or nonlinear effects of flood events

across firms within the same region.

2.2 Econometric Methodology

Our identification strategy exploits variation in the timing and intensity of exposure to
severe and extreme floods across districts and over time. A popular method to estimate
the causal effect of these types of “treatments” on an outcome is to compare over time
groups experiencing different evolutions of their exposure to treatment, which is com-
monly referred to as the generalized differences-in-differences approach. This approach
compares changes in outcomes across groups (districts) that experience differential expo-
sure to treatment at different points in time.

In practice, this idea is implemented by estimating specifications of the form:
qu,t = 04 + )\t + 5Dg,t + Eg.ts

where Y, denotes the outcome of interest for group g in period ¢, oy are group (district)
fixed effects, ), are time fixed effects, and D, is a treatment indicator capturing exposure
to a severe or extreme flood. The coefficient 3 identifies the average effect of flood exposure,
under the assumption of parallel trends.

Such two-way fixed effects (TWFE) regressions are among the most widely used meth-
ods in empirical economics for estimating the effect of a treatment on an outcome. Moti-
vated by the fact that, in a simple two-period, two-group setup, the difference-in-differences
(DiD) estimator corresponds to the treatment coefficient from a TWFE regression, re-
searchers have commonly applied TWEFE specifications in more complex settings involv-
ing multiple groups and periods, staggered treatment adoption, treatment reversals, or
non-binary treatments.

However, recent work has shown that in such extended designs, the TWFE estimator
identifies a causal average treatment effect (ATE) only under a set of stringent assump-
tions: (i) the parallel trends assumption must hold; (ii) there are no anticipation effects;
and (iii) the treatment effect is constant across groups and over time. While the first two

assumptions are commonly discussed in applied work, the third—constant treatment ef-



tects—is often overlooked and unlikely to hold in many empirical settings. As emphasized
by de Chaisemartin and D"Haultfoeuille (2023), violations of this assumption can lead to
biased or misleading estimates, prompting a growing literature that diagnoses the issue
and proposes alternative estimators.

In our setting, in addition to the standard identification assumptions of no anticipation,
treatment exogeneity, and parallel trends, several features of the treatment process intro-
duce further complications. Unlike the canonical difference-in-differences (DiD) setup,
where treatment is binary and absorbing—i.e., once treated, a unit remains treated—our
treatment is non-absorbing. Districts may experience a severe or extreme flood in one year
but not in others, allowing for multiple entries into and exits from treatment over the sam-
ple period. This temporal variability violates assumptions underlying many conventional
two-way fixed effects (TWEFE) estimators.

Moreover, the effects of flood exposure may be heterogeneous across both time and
cohorts. Establishments are affected by treatment at different points during the sample,
and the average treatment effect may vary depending on whether a district is exposed
earlier or later. Additionally, we cannot rule out dynamic treatment effects—where the
impact of a flood persists, attenuates, or intensifies over time—further complicating causal
interpretation. These issues motivate the use of alternative estimation strategies that can
accommodate non-absorbing treatments and heterogeneous or dynamic effects.

To address the concerns outlined above, we follow Castro-Vincenzi (2024), who stud-
ies a similar setting, and implements the estimator proposed by De Chaisemartin and
d’Haultfoeuille (2024). This is a difference-in-differences estimator designed to recover
contemporaneous and dynamic treatment effects in settings with heterogeneous effects
and non-absorbing treatment. The estimator generalizes the event-study framework by
defining the “event” as the first time a group changes its treatment status. It then com-
pares the evolution of outcomes in treated groups to that of untreated control groups with
the same initial treatment status.

Formally, let F;, denote the first period in which group g experiences a change in treat-
ment. The estimator of the expected difference between group ¢’s actual outcome at time
F, — 1+ and its counterfactual “status quo” outcome if its treatment had remained equal
to its period-one value from period one to F,, — 1 + [ is given by:

1
DID,; = Yy 5, 140~ Yor, 1 — wg—— > (Y by—140 — Yy p,m1) (1)

Ng
Fo=14L g:D ) =Dyg1,F > Fy—1+L

where Y, ., corresponds to the outcome of interest for group g at moment F, — 1 + 1,

or { periods after group g received the treatment for the first time in period Fy, Y, r,
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corresponds to the same outcome of interest for group g one period before it changes
treatment status for the first time, and N/ = #{¢' : Dy, = D, 1, F;y > t} is the number of
groups ¢’ with the same period-one treatment as g, and that have kept the same treatment
from period 1 to t (De Chaisemartin and d’Haultfoeuille, 2024).

Intuitively, this DID estimator compares the change in outcomes from period Fj, — 1 to
F, — 1 + ¢ for group g—which experiences a treatment change at time F;,—to the average
outcome change over the same period for groups that (i) share the same baseline treat-
ment status (D, = D,1) and (ii) have not experienced a treatment change by period
F, — 1 + (. This comparison isolates the effect of transitioning into treatment, control-
ling for underlying trends among comparable, untreated groups (Castro-Vincenzi, 2024;
De Chaisemartin and d"Haultfoeuille, 2024).

In addition, De Chaisemartin and d’Haultfoeuille (2024) define an estimator for the
non-normalized event-study effects, which aggregates the group-specific DI D, , estimates
across all eligible groups. This estimator is given by:

1
DID; =+~ > S, DIDy, (2)

£ g:Fyg—14+L<T}

where T, denotes the last period for which there exists a group with the same period-one
treatment status as group g and no treatment change since the beginning of the panel.
The term N, = #{g : F, — 1 + ¢ < T,} is the number of groups for which DID,, can
be estimated at event time ¢, and S, = 1{Dyp, > Dy} — 1{Dyr, < Dy} indicates the
direction of treatment change: it equals 1 for groups whose treatment increases at ¥, and
—1 for those whose treatment decreases (De Chaisemartin and d’Haultfoeuille, 2024).

Intuitively, this estimator captures the average effect of being exposed to a weakly
higher level of treatment for [ periods, by comparing changes in outcomes for groups
whose treatment level changes relative to otherwise similar groups with unchanged treat-
ment status.

To fix ideas, in our setting each group ¢ corresponds to a district (or set of districts)
that experiences a change in treatment status—defined as exposure to a severe or extreme
flood—for the first time in year F,. Since treatment is assigned at the district level, but
outcomes are observed at the establishment level, our setup involves a mismatch between
the level of treatment and the level of outcome measurement.

The estimators proposed by De Chaisemartin and d"Haultfoeuille (2024) can accom-
modate such settings. Specifically, the did_multiplegt_dyn command that implements
the estimators proposed in their work allows for data that is more disaggregated than the

(g,t) level. When establishment-level data is provided, the command internally aggre-
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gates outcomes to the (g, t) level, and automatically weights each (g, t) cell by the number
of underlying observations. This feature enables us to estimate group-time average treat-

ment effects while preserving consistency with the group-level treatment variation.

2.3 The Impact of Extreme Flooding on Firm-level Outcomes

As noted in the previous section, Figure 1 illustrates a central feature of our empirical
setting: the pronounced geographic variation in flood exposure across Indian districts.
The bottom-left panel provides further context by documenting historical exposure to se-
vere and extreme floods during the pre-sample period (1985-1999). Several districts in the
northeast and north experienced recurrent high-severity floods, while much of central and
western India saw little or no such activity. This variation reflects persistent climatic and
geographic patterns that have also shaped historical exposure. Such spatial differences are
central to our identification strategy and form the basis of our cross-sectional heterogene-
ity analysis, as they allow for comparisons between districts with systematically different
flood risk profiles.

To explore this dimension more systematically, we classify districts into quartiles based
on their cumulative exposure to severe and extreme floods between 1985 and 1999, as shown
in Figure 2. We focus on the top 25% of historically exposed districts (shown in green) and
the bottom 25% (shown in yellow). This grouping enables a test of whether the economic
effects of flood events differ with long-run exposure—under the hypothesis that firms in
historically flood-prone areas may have adapted more extensively to mitigate the impacts
of recurrent climate risk.

We start by estimating the effect of a severe or extreme flood on establishment-level
output and capital, comparing districts with high versus low historical exposure to such
events. To ensure that the treatment and control groups are appropriately defined, we
restrict the estimation sample to establishments that had not experienced a flood at base-
line. Specifically, we exclude all firms located in districts that were treated in the first
period of our sample (2000), as well as those exposed to floods in the two years immedi-
ately prior (1998-1999). This restriction guarantees that all included establishments share
a common pre-treatment status and enables a clean interpretation of our estimates as the
effect of transitioning from no exposure to exposure to a severe or extreme flood, rela-
tive to a counterfactual in which the district remained unexposed (De Chaisemartin and
d’Haultfoeuille, 2024).

Figure 3 presents the non-normalized event-study estimates (Eq. 1) of the dynamic ef-

tects of severe or extreme floods on establishment-level outcomes, separately for districts
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Figure 2: Historical exposure to floods in Indian districts: top and bottom quartiles
Severe & extreme floods >50% of district, 1985-1999

0
Bottom 25%
Top 25%

Notes: District-level historical flood exposure based on events that affected more than 50% of a district’s area.
Source: ML Infomap, the Dartmouth Flood Observatory and authors” own calculations.

with low and high historical exposure to flooding. The top panels show the trajectory of
log output around the first incidence of a flood event covering more than 50% of a dis-
trict’s area up to 4 years after the first flooding event (¢ = 4). In low-exposure districts
(left panel), output declines steadily after treatment, reaching a cumulative drop of ap-
proximately 0.5 log points by year four relative to production in plants in districts that
have not been yet treated. Although confidence intervals are wide, the downward trend
is persistent and suggests that floods impose lasting disruptions in regions with limited
prior exposure. In contrast, the corresponding panel for high-exposure districts (right)
reveals no meaningful post-flood decline in output. If anything, the trajectory slightly in-
creases over time, though not significantly. These contrasting patterns suggest that prior
exposure to floods may have induced forms of resilience or adaptation that mitigate the
production losses associated with new flood shocks.

The bottom panels display a similar pattern for capital. In low-exposure districts, cap-
ital stock begins to decline immediately following the first flood event and continues to
fall over the subsequent years, consistent with a disinvestment response or flood-related
capital destruction. By contrast, in high-exposure districts, capital appears to increase
modestly in the years following the shock. While the estimates are imprecise, the upward

13



Figure 3: Effect of severe-extreme floods on establishment-level outcomes by degrees of historical exposure

1[Ext. Flood; > 50%]

Previous exposure to extreme floods (1985-1999, >50%)

low top

log(Output;)
o
JL
log(Output;)
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Analytical standard errors are clustered at the district level. 90% confidence intervals relying on a normal approximation are displayed.

Notes: District-level historical flood exposure based on events that affected more than 50% of a district’s area
between 1985-1999. Non-normalized event study estimators of the dynamic effects of an extreme/severe
flood are computed as in Eq. 1. Standard errors are clustered at the district level, and 90% confidence
intervals relying on a normal approximation are displayed. District-specific linear trends are included in
the estimation.

trajectory is suggestive of a potential adaptation margin—firms in historically exposed
regions may respond by reinforcing or upgrading physical capital to buffer against the
recurrence of flood shocks. Taken together, the event-study plots support the hypothe-
sis that historical exposure facilitates adaptive investment, thereby reducing the long-run

economic impact of severe and extreme floods.

3 Model

We propose a dynamic spatial equilibrium model of firm dynamics that aims to rationalize
the stylized facts documented in the previous section. Primarily, it allows to study how
firms may adapt to aggregate flood risk on the intensive margin by accumulating flood
preventing capital. The model borrows insights from the literature on dynamic models of

economic geography (Kleinman et al. (2023); Giannone et al. (2020)) as well as the one
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on firm dynamics (Khan and Thomas (2008); Winberry (2021)).

3.1 Environment
3.1.1 Geography

We assume that there is a discrete number of locations NN, indexed by [ € {1,2,3,...,L}.
Locations differ in two key dimensions. First, each location has its own stochastic process
for the flood risk I';. Thus, some locations are riskier than others. A region may be either
flooded or non-flooded a; € {flood, no flood}. Second, locations are heterogeneous with
respect to the size of their population L,,, and the aggregate population in the economy is

. . L
a unit continuum ) ,_, L; = 1.

3.1.2 Trade and Goods

For simplicity, we assume that there exists a single final good Y that is produced by firms
in all locations and is costlessly tradable. Therefore, prices thereof equalize across space

P =pVn.

3.1.3 Firms

The firm side builds heavily on Khan and Thomas (2008), with the addition of convex
costs and the access to the flood preventing capital /.

Firms in this economy have access to two types of capital: a production capital k£ and
a flood preventing capital ¥/ whose role is to mitigate the damages caused by floods. We
assume that upon a flood realization in location [, I,,, all firms in that location suffer a
loss 1 — F(kf) of both capital and production in that period *. We assume that F'(k/) is
concave, bounded between 0 and 1, 0 < F(k/) < 1 and increasing. Since the focus is on
the adaptation of firms on the intensive margin, no mobility is allowed.

Time is discrete and there exists a unit continuum of firms j € [0, 1]. To ease notation,
we define the retained fractions of capital and output as R;; = I, ,—0} + H{al,t:uF(k{, :)-
Where I, is the indicator of whether the location is flooded or not, (F(k:f ;) is the fraction
of both output and capital that the firm retains in the event of a flood. That is, firms keep
the full stock of production and capital if there is no flood, and retain a fraction F(kf ;) in

the event of a flood. They produce the final good according to the following production

4This is motivated by the fact that the flood may hit at any point during the period, potentially damaging
both the stock of capital and the stock of inventories already produced.
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function:
a 1l—a\M
Y = Rijzie ((Rejki)" ni7®) (3)

where z;, is the idiosyncratic productivity of the firm, « is the share of capital in produc-
tion,  is the returns to scale parameter, kjf . is the stock of flood preventing capital of a
tirm, k;, is the stock of production capital of a firm and n;, is the hired labour.

The idiosyncratic shock is independent across firms and locations but follows an auto-
correlated AR(1) process within firms:

log zj 141 = p.log 21 + €11, where e ~ N(0,0,) (4)

Firms in this economy observe the aggregate state of the economy, which includes
the realization of flood shocks in each location a;; and prices for labour w,;. Then, they
produce the final good y;; by employing their retained stock of capital R, ; and labour [;,,
which they hire period-by-period on the local labour market.

After production takes place, firms decide how much they want to invest in both the
production and flood preventing capitals. We assume that both capitals are subject to
the same depreciation rate and that both stocks get damaged in the event of a flood. We
denote investment in flood preventing capital by zf L= k:]f 1= (L=0)Ry; k:Jf . and investment
in production capital by i;, = k;j,;11 — (1 — )R ;k;,. Lastly, upon 2(non—zero) investment,

. 2 .
tirms must pay convex adjustment costs ¢ <%) k;j;and ¢ (%) kjf . for production and
flood preventing capital, respectively. | "

3.1.4 Households

There exists a homogeneous unit continuum of exogenously distributed households across
locations that satisfies >, L, = 1.

The preferences thereof are represented by the following expected utility function:

i ( i ) (5)
E log | Cyy — £ 5
— 147

Which corresponds to the expected discounted sum of GHH (Greenwood et al., 1988)

flow period utilities °. C;; denotes consumption at time ¢ in location [ and Ny is the coun-
terpart for the labour supply. ¢ regulates the disutility from labour and 7 is the Frisch
elasticity. We assume that households in this economy are immobile. In addition, they

SThese preferences have the convenient feature of eliminating the wealth effect from the labour supply and
essentially collapsing the household side to a static problem.
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are assumed to be hand to mouth and consume their labour income period by period
Ciy = Wy N,;. Furthermore, we assume that firms are owned by risk-neutral foreign
investors, so that the relevant discount factor for the firms is constant and equal to the

reciprocal of the interest rate, 5 = T
r

3.2 Firm’s Optimization

The firm’s individual states include the location [;, idiosyncratic productivity z,,, stock
of production capital k;, and flood preventing capital k;]f .- The aggregate state vector S; in
term includes the state of flooding in each location {a; }% , as well as the entire distribution
of firms over the state space, (I, 2, k, k/). Embedding the dynamics of the aggregate state
St is necessary in this setting due to the presence of aggregate uncertainty stemming from
the aggregate flood risk by region.

Given this setting, the Bellman Equation for the firm can be written as:

V(l, 2,k k' S) = max 7(l, 2,k k';S) + SE (V(z’,z’,k’,kf’;s’))

nk kf’

m(l, 2, k, k' S) = R(S)z (R(S)k)*n'~*)" — w(S)n

S ducti Labour Cost
— (K = (1=0)R(S)k) — (k' — (1—06)R(S)K’) (6)

N
~ ~

Investment Production Capital ~ Investment Flood Preventing Capital

¢ [ (K —(1—0)R(S)k)\> ¢ ((k" = (1= 8)R(S)k)\’
;( ; ) k-5 ( o )’“f

TV
Convex Costs

where V (1, z, k, k/; S) is the Value Function of the firm and the expectation operator E is
with respect to idiosyncratic shocks, aggregate flood shocks and future prices. Note that
since the labour hiring problem is static, optimal labour can be obtained independently
of next period’s optimal capitals k', k/* given the beginning of period pre-installed stock
of capitals. Recall that given our assumption that firms are owned by foreign risk neutral
investors the discount factor of the firm is a constant, 5.

Therefore, the optimal labour choice for the firm is:

1

Q) w(S) (1—a)u—1
nll, 2k 113 8) = <R<s>z<R<s>k>w<1 - a)u) ' @)

Clearly, those areas hit by a flood @; will experience lower labour demand as their pro-

ductive capability will be hindered in the form of a reduced stock of capital and production
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frontier for the period.
Optimality for the production capital requires:

ov

e = — 1 — convex cost term
+ BE(R/(S/)1+a'u2,0z,u(k}/)a“_1nl”(1_a) (8)

+ (1 — §)R'(S') + convex cost terms)

ov

—— = — 1 — convex cost term
okf

1 6E (1 + Oé,lL)R/(S,)a'uZ/ (k/an/(l—a)>” F/(kf,)]lal,zl

+ (1= 0K F' (k")
+ (1= 0k F' (k)=
+(1=8R(S)

-+ convex cost terms}

This first order condition acts through two channels. First, as with the standard pro-
duction capital, acquiring more flood preventing capital today will lead to a higher resale
value tomorrow (1 — 0)R'(S’). Secondly, and crucially, accumulating flood preventing
capital will increase the fractions of production and capital stocks that are retained in the
event of a flood, I, —;.

Therefore, the key determinants of whether it is optimal for the firms to invest in the
flood preventing capital are (i) the probability that a flood will happen in the next period,

given by the Markov Process I'; and (ii) the marginal gains of investing on flood prevent-

OF (kT)
okt

flood risk the optimal amount of flood preventing capital would be nought as the cost of

ing capital on the retained fraction of production and capital . Note that under no

acquiring the capital would dominate the expected depreciated value thereof.

3.3 Household Optimization

Given the simplifying assumptions of (i) firms being owned by risk-neutral foreign in-
vestors (ii) no mobility across regions and (iii) GHH preferences, the problem of the
households is straightforward:

1+n

maxlog(C' — &)

1+n (10)
st. C<w(S)N
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Which results in the static labour supply equation:

()

3.4 Equilibrium Definition

A Recursive Competitive Equilibrium (RCE) of this economy is a set of policy functions
k(1 2,k k5S), K (1, 2, k, k75 S), n(l, 2, k, k'3 S), value function V (I, 2, k, k/; S), labour sup-

ply N(S), prices w(S) and r, and invariant distribution (1, z, k, k') such that:

e Given prices, the policy function N(S) solves the households” labour supply prob-

lem.

e Given prices, state of the economy S and invariant distribution p(l, 2, k, k'), the pol-

icy functions k%' (1, 2, k, k'3 S), k' (1, 2, k, k7; S), n(l, z, k, k'; S) and value function V (I, z

solve the firms’ problem.

e The invariant distribution y satisfies:

NN

W(LxZxKxK') = /T((l7z,k,kf)7L><ZxKxK-f)dﬂ(l,z,k,k-f)VL cL,ZcZ,KcK, K ckt
(12)
Where 7'(-) is the transition function defined as:

T((, 2k, kf)a LxZxKx Kf) = ]Ik/(l,z,k,kf;S)eK]ka/(l,z,k,kf;S)er Z m.(2, 2" )lier, (13)
z'eZ

Where recall that firms are immobile across locations and 7. (z, 2') is the p.d.f. of the
idiosyncratic shocks z.

e The demand and supply for labour is clared at every aggregate state S at prices w(S):

1

L (@)5 :/n(l,z,k,kf;S)du ateach [ (14)

4 Calibration and Solution Method

The present section discusses the calibration and employed solution methodology.
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4,1 Calibration

This preliminary draft closely follows standard values in the literature in order to aid with
the validation of the solution method. In particular, we largely follow the quarterly cali-
bration in Winberry (2021) for the standard parameters, and discuss the calibration of the
model specific features in greater detail shortly.

Fixed Parameters Overall, we set the time horizon to a quarter. Subsequently, the cho-
sen discount factor 3 is 0.99, implying a quarterly 1% interest rate. On the household side,
the Frisch elasticity % is set to 2.0 and the disutility of labour ¢ is set to 2.1.

On the firm side, first, a depreciation rate of 2% is chosen, so that the approximate
yearly depreciation rate is 8%. Second, the returns to scale . are set to 0.8, a common
value in the literature. Third, the share of capital in production « is set to 0.36, again
a standard value in the literature, and that of labour to 0.64. Lastly, the process for the
idiosyncratic productivity shocks z is set so that the autocorrelation is p, = 0.9 and the
standard deviation o, = 0.053, as estimated in Winberry (2021). Lastly, the convex costs ¢
are set to 0.02, a relatively low value in the literature but sufficient to generate a continuous

distribution of investment rates. The parameters are shown in table 2.

Table 2: Fixed Parameters in the Model.

Parameter Definition Value
Time Horizon
B Discount Factor 0.99
Household Block
n Inverse Frisch Elasticity 0.5
13 Disutility of Labour 21
Firm Block
o Depreciation Rate 0.02
1 Returns to Scale 0.8
a Capital Share Production 0.36
P Autocorrelation lidiosyncratic Shocks 0.9
o Volatility Idiosyncratic Shocks 0.053
) Convex Costs 0.02

Model-specific parameterization
While the model is embedded within a standard firm dynamics setting a la Khan and
Thomas (2008), there are two main features specific to our setting, namely the Markovian

Process for the flood risk per location, I';, and the function regulating the strength of the
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flood preventing capital, F'(k/).

First, regarding the flood risk processes {I';}{,, we assume the existence of two loca-
tions, Safe and Risky, each with their own process. We assume that the population is split
equally among the two locations, and, based on the occurence of floods during the sample
period in the data, we assign a flood probability of 6% to the Safe area and a 14% one to
the Risky area, which corresponds to floods occuring every 16 and 7 quarters, respectively.

Thus, the Markovian Chains read as follows:

0.94 0.06 0.86 0.14
Psafe = [Risky = 15
Saf [0.94 0.06] Risky [0.86 0.14] (15)

The states are, respectively, a; € {No Flood, Flooded}. Note that the probabilities are
assumed to be i.i.d.; a given realization is not informative about future realizations.

Secondly, there is the function regulating the strength of the flood preventing capital
in mitigating damages to both the output and capital stock, (k7). We choose the scaled

sigmoid function F'(k/) = where s > 0 is the scaling parameter. This function

1
1+exp(—sz)

1, it is increasing, and it is concave in our domain of interest, kf € R.. Furthermore, the

satisfies the three conditions stated above. Namely, it is bounded between 0 < <
scale parameter s allows us to calibrate the marginal benefit from employing an additional
unit of flood preventing capital. Figure 4 shows precisely this.

Given that the derivative of the scaled sigmoid function is mggfff) = o(sz)(1 —o(sz))s,
the saturation point where the share of protected output and capital stock is close to 1

is smaller the larger s is. In other words, for a given desired protection level by the firm
p € (0.5,1), alower level of stock of flood preventing capital will be required the larger s is.
This preliminary draft employs a value of s = 1, which collapses to the standard sigmoid
function and as we shall see in the next section implies a plausible ratio between the flood
preventing and production capitals.

4.2 Solution Method

There are three main challenges to solve this model. First, we have the presence of both
idiosyncratic and aggregate uncertainty. Second, the dimensionality of the state space in
the full model can be quite large, with L states of flooding, L prices W;(S) and the entire
distribution \(l, z, k, k') to be accounted for. Third, prices are not cleared within period
in a straightforward manner due to the presence of heterogeneous firms, and solving for
prices as a function of the aggregate state S is required.

To overcome said challenges, we employ the methodology proposed in Maliar et al.
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Figure 4: Scaled Sigmoid Function
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Notes: Scaled Sigmoid Function employed as the Flood Impact Mitigating Function F(k/) in the Calibration.
The Scale Parameter s regulates the marginal benefit of installing an additional unit of flood preventing
capital.

(2021) and Han et al. (2021), which relies on utilizing deep learning techniques. The ad-
vantages of employing deep learning as opposed to grid-based methods are mainly three-
fold. First, while a grid discretization scaled non-linearly with the number of dimensions,
training Neural Networks (NN henceforth) requires data sampling, which for a given data
size scales linearly in the number of dimensions. Note that this is already a game changer:
a model with 30 dimensions and 5 grid points per dimension would require 9.31e20 ele-
ments in total, whereas a sampling method requires 30 x N, with N being the number of
samples. Furthermore, the ability to train the NN employing batches, a subset of the data,
guarantees that memory consumption remains manageable.

Secondly, as we shall discuss briefly, the embedded sampling methodology in the algo-
rithm guarantees that the training data is drawn from the ergodic set where the solution
“lives”. This is crucial, as opposed to a grid-based method, the accuracy is where it is
needed, not uniformly along the entire hypercube. As outlined in Maliar et al. (2021), if
we assume that the ergodic set of the model is a hypersphere of diameter 1, the ratio of the
volume of the hypersphere relative to that of the cube decreases exponentially as the di-
mensionality increases. With two dimensions, d = 2, the ratio is 79%, but this falls quickly
to 2 x 107! for at d = 30. Therefore, the accuracy of a grid-based hypercube quickly falls

as the number of dimensions increases relative to a simulation-based approach.
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Third, NNs have been shown to be universal approximators. In particular, it can be
shown that any continuous function with domain on an n-dimensional hypercube can be
approximated by a NN with sufficient width and just one layer (Cybenko, 1989). A key
condition is that the employed activation functions in the hidden layers are not polyno-
mial, as this family has limited ability to capture arbitrary relationships (Hornik et al.,
1989). In economics, this translates into the guarantee that either the policy functions or
value functions will be approximated correctly by a sufficiently wide NN.

The algorithm that we implement 1 closely follows the one in Han et al. (2021), with
the addition of multiple controls and an auxiliary NN for the market clearing prices w(S),
which need to clear labour supply and demand at every region and aggregate state S. The
implementation is done with Pytorch and is compiled via TorchScript. Further details are
provided in the appendix (7).

23



Algorithm 1 DeepHam Han et al. (2021)-based algorithm for the model economy.
1:

2: Step 0. Initialize the production capital, flood preventing capital, value function and
wage NNs, K94 (0), KL% (0), VIx(0), wi)y(0). Fix the number of agents in the econ-
omy, N, and the number of economies to be simulated, E.

I

: Pre-training. Perform a preliminary learning via regression so that the production
capital and flood preventing capital NNs output the steady-state level of capital k.
Likewise, pre-train the wage NN to learn the steady-state value ws;.

: for k =1,2, ..., kpe, do (outer DeepHAM iterations)

P N > @

Step 1 (Simulation): Obtain the ergodic distribution of the economy u*(-) by
simulating the economy forward with the current guesses K%.1(0), K% '(0) and

wiiy (S)-

10: Step 2 (Training the Value Function V{(0)): Draw F initial conditions from the
ergodic distribution x*(-) and simulate the shocks forward with {I';}%, and (2, ?’).
Next, compute the terminal realized value V7 (-) on these Monte Carlo paths by sim-
ulating forward the economy with K*71(0), K1%'(©) and why'(S). Lastly, train
VE(©) to learn these terminal realized values:

min By s, (Vin(©) = V7))

11:

12: Step 3 (Training the policy functions K% (0), K (0©) and w4’ (S)): Asin Step 2,
draw F initial conditions from the ergodic distribution x*(-) and simulate the shocks
forward with {I';}2, and 7(z, 2’). Build the computational graph associated with the
economy, and simulate it forward. At each evaluation, K% (0), K4 (©) are updated
via Stochastic Gradient Descent to optimize:

K ok/f
6+, t=0

t=T-1
max E/J'k(')yz,allel ( Z ﬂtﬂz’(') +ﬁTVJ\ka(6)>

While w'y (©) is trained to minimize:

t=T-1

2
%1‘149 Euk(')%’azle ( Z Laa(-) = LSN())

t=0 I=1

24
Where Lg;,; is aggregate labour demand at time ¢ in location [ and L, is the
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5 Results

This section presents the main results of the paper. The empirical section provided a key
stylized fact arguing that historically less exposed areas experienced larger production
and capital stock losses following a flood, relative to their counterparts with higher his-
torical exposure. To rationalize this finding, we proposed a firms dynamics model with
aggregate flood uncertainty that allowed for investment in a distinct type of capital, the
flood preventing capital. The core functionality of this capital was to insure privately the
output and capital stocks of a firm in the event of a flood.

Is adaptation through investment in the flood preventing capital consistent with the
empirical findings? What are its implications for the ergodic distribution of investment of
each type of capital in safer and riskier areas? In this section, we proceed in two steps.
First, we study the predictions of the model mechanisms regarding the ergodic distribu-
tion of both capitals across space and capital types. Second, we examine the response of
the economies in safer and riskier areas to a flood shock, and track the responses of the

main aggregates of interest of the economy.

5.1 Ergodic Distributions of Capital across Space and Capital Types

Recall from the model section that we assumed two types of capital: the one employed in
production, k, and the flood preventing capital, k/. The former follows the standard ratio-
nale in macroeconomics: an investment cost in the current period of one unit of the final
good provides certain increased production and resale value in the next. The latter oper-
ates differently. While the investment cost today is the same, the returns to the investment
vary as a function of the exposure to flood risk. Upon a flood shock, this capital mitigates
the damages to both production and the capital stock, in a marginally decreasing fashion.

Therefore, intuitively, we would expect locations with higher exposure to flood risk
to invest more heavily in the flood preventing capital technology, as the state of the world
where the returns to it can materialize takes place with higher probability. A related ques-
tion is whether the investment need in the flood preventing capital in riskier regions poses
a heavy strain on the production capital that the firm is able to operate at.

Figure (5) contains the ergodic distributions of firm-level investment in each capital
by location type under aggregate flood uncertainty. Results are separated by region, with
the left column showing the results for the Safe region and the right column doing so for
the Risky region. Furthermore, the top row contains the figures for the flood preventing
capital k!, while the bottom row shows the results for the production capital k.

Two main observations are in place. First, as foretold by the previous discussion, in-
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vestment in the flood preventing capital is higher in the Risky region, where the quarterly
flood probability is about 14%. The average chosen level of investment, of around 4.5,
protects the stocks of capital and production at a 98.9% given our sigmoidal choice for the
mitigating function F'(k/). In contrast, the protection level in the Safe region, correspond-
ing to an investment level of around 3.5 units of flood preventing capital is 97.07%, which
corresponds to a 6% flood probability. Thus, we obtain a strict ranking of investment in
the flood preventing capital as a function of the exposure of the region to this phenomena,
in line with the intuition in equation (9).

Second, regarding the investment in the production capital, we find, in this prelimi-
nary calibration that the Safe region’s investment is stochastically dominated by that of
region 1. That is, for any capital level x, the probability that P(k < x) is higher in the Safe
region. This, however, we interpret as a local rather than global property. On one hand,
the presence of the flood risk leads to a precautionary capital accumulating motive for the
tirms, particularly when the marginal gains from the investment in the flood preventing
capital are high, as in the current calibration. On the other, there is the cost of keeping the
stock of flood preventing capital, which weakens the degree to which the optimal scale of
production can be maintained. In the appendix 7.2, we show how decreasing the marginal
benefit from investing in flood preventing capital I’ (k') results in this being overturned.

5.2 Responses to Flood Shocks across Space

The main empirical finding suggested that regions with high historical exposure to floods
experienced a smaller relative decline in production and capital stocks following a flood.
To rationalize this finding, we proposed a firms dynamics spatial model that allowed firms
to invest in the flood preventing capital, whose main role was to mitigate the damages
generated by floods on both production and capital stocks. In this section, we focus on
analyzing whether the proposed mechanism can generate responses consistent with the
data.

To this end, we compute the Impulse Responses of both regional economies to an un-
expected flood shock and trace the response of the main aggregates of interest over time.
Given that the model features no steady-state, we simulate many paths for the economy
and compute the average impulse response across simulations:

N
1 Yitin(a + Lo, =Y (af, o,
IRF, ., = NE Leh (@t YI:‘ 0 '“f:h) *l,t-i-h( Lishs Hivn) « 100 (16)
n—1 Leen (AL e ns 1)

Where N is the number of economies simulated, Y stands for an aggregate of interest,
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Figure 5: Distribution of Firms’ Capital in the Risky Steady State of the Model, by Region and Type

Firm Capital Distribution by Region and Type

. Safe Region Risky Region

S S
= =
S S
g g
o o

2 3 4 5 3 4 5 6

Flood Preventing Capital k/ Flood Preventing Capital kf

Percent (%)

Percent (%)

0 10 20 30 40 50 0 10 20 30 40 50
Production Capital % Production Capital &

Notes: The Safe Region has a Flood Probability of 6%, while the Risky Region has a 14% probability. The left
column contains the data for the Safe Region while the right column contains the data for the Risky Region.

The top row shows the Flood Preventing Capital &/ distribution while the bottom one shows the one for the
Production Capital .
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I,—o denotes the shock to the flood status at period ¢, and {z*}!™" is a generic sequence
without the additional flood shock and {z}/*" are the shocked counterparts. Figure (6)
displays the obtained results.

Figure 6: IRFs to a Flood Shock, by Region
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Notes: Obtained IRFs as a response to a Flood Shock averaged across 1000 starting conditions. The x-axis
shows the time horizon, which is set to quarters, and is 1-indexed. The y-axis shows the percentage deviation
(%) w.r.t. the risky steady-state. The left column shows the IRFs for the Safe Region, while the right one
does so for the Risky Region. Both Capitals are the beginning of period ones.

Clearly, following a flood shock (time of impact set to 1 on the x-axis), the response of
the aggregates of interest is negative and persistent across both economies. Importantly,
however, the responses in the Safe region experience a larger decline than those in the
Risky region. This is also the case in the calibration with lower marginal benefits from
investing in the flood preventing capital, F’(k/), 7.3. This is consistent with the main em-
pirical findings, and is driven by the increased incentives to invest in the flood preventing
capital in the risky region.
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As discussed in the previous section, firms in the Risky region have a protection level
against floods of 98.9% on average, as opposed to the 97.07% of those in the Safe region.
This directly translates into a larger decline in the capital stock and production in the Safe
region in the event of a flood. Upon impact, a fraction 1 — F(K/) of the production y
and flood preventing capital stocks k and k7 are lost to the flooding, with the response for
output being aggravated by the decreased capital stock.

Inspecting each aggregate separately, we can observe that the decline of labour on im-
pact is around —3% in the Safe region compared to the —1% in the Risky region, and
requires about 4 quarters to revert back. The decline in labour demand is a direct result of
the decreased labour demand following a reduced capital stock and production frontier
when the shock hits.

Regarding the response of capital, since we defined it to be the beginning-of-period
one, it’s response does not appear until period 2, where the decline is of around —1.5% in
the Safe region and of around —0.3% in the Risky region. It is important to note here that
between ¢t and ¢ + 1 the firm has the option to invest in more capital, and consequently
the protection level is but a lower bound on its response. Interestingly, the response of
the flood preventing capital is more pronounced than that of the production capital, sug-
gesting that firms focus their resources on investing in the production capital first. This
is consistent with the FOC for the flood preventing capital 9, which states that the benefit
of installing an additional unit thereof is greater the higher is the stock of the production
capital (positive cross-derivative).

Lastly, production experiences the largest decline on impact. This is due to the com-
bined effect of the decreased stock of production capital and the direct impact of floods
on production. The losses increase to —4% in the Safe region and to around —1.5% in the
Risky region. In the case of the Safe region, it exceeds the protection level’s 97.07% buffer
given the aforementioned combined effect.

In summary, upon an unexpected flood shock, the Safer region, where the investment
in the stock of the flood preventing capital is lower, experiences larger declines across
all of the analyzed aggregates of interest. Taken together, the results from the previous
and present section point to a noteworthy implication of exposure to flood risk; while
the average profits across time are lower in the riskier region, investment in alleviating the
damages implies that in the event of a flood the disturbance will be lower, and the recovery

faster, than in the safer region.
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6 Conclusion

In this paper, we studied how manufacturing firms in India adapt to the ever increasing
risk of extreme climate events, in particular to flooding. Employing rich establishment-
level data from the Annual Survey of Industries (ASI) in conjunction with flood event
data from the Dartmouth Flood Observatory (DOF) and the state-of-the-art methodology
by De Chaisemartin and d’"Haultfoeuille (2024), we found empirical evidence pointing to
establishments in historically less exposed districts experiencing larger declines in their
production and capital following a flood.

To rationalize these findings, we proposed a firm dynamics dynamic spatial model. In
the model, locations were heterogeneous in their probability of experiencing a flood, and
tirms were able to invest in a flood preventing capital that mitigated the damages caused by
flooding to both capital and production. Given the setup with aggregate uncertainty and
the requirement for agents to keep track of prices across space and time under rational
expectations, the usage of deep learning techniques was required in order to tame the
curse of dimensionality.

We then took this model to a two-region calibration with flood probabilities estimated
from the data. We found that at the risky-steady state establishments in the Risky Re-
gion invested more in flood preventing capital, which negatively affected their discounted
sum of profits relative to their counterparts in the Safer Region. We then computed the
responses in each region to a flood shock, and found that the flood preventing capital ac-
cumulation mechanism was able to rationalize the findings in the data. In particular, we
found that following a flood shock all of the aggregates of interest (including capital and
production) experienced a larger decline in the Safer Region, due to their lower investment
in this adaptation mechanism.

There are however interesting avenues for future research. First, finding empirical
support for the spatial differences in the investment of flood preventing capital would
be crucial, as well as identifying this type of capital in the data. Second, a realistic calibra-
tion, capable of replicating key moments and spatial characteristics of the Indian economy
would be crucial in order to perform sound policy exercises. Third, while we currently
only consider private insurance against flooding, the public sector could play a key role,
and subsidies could potentially help explain why capital and production in areas with
high historical exposure experience a positive response in the data.
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7 Computational Appendix

In this section we provide additional details on the employed environment and setup,
hyperparameter configuration and structure of the NNs.

7.A Environment and Setup

The implementation is written in Pytorch 2.7. There are two main reasons for this. First,
as opposed to Tensorflow, Pytorch can be installed locally on a Windows 10/11 machine to
utilize a dedicated GPU without any further requirements °. Second, Pytorch 2.0+ allows
for convenient compilation of the code through either the torch.compile() or torch.jit.script()
APIs. In addition to this, Pytorch’s eager execution runs line by line as standard Python,
therefore debugging is seamless.

Pytorch 2.0+ supports GPU hardware acceleration on multiple backends, most notably
CUDA 7 and MPS®. It is also compatible with Vulkan and OpenCL at an experimental state,
allowing for the use of GPUs of other brands (AMD). It is most mature at CUDA how-
ever, thanks to its established cuDNN (Deep Learning primitives) and cuBLAS (Algebra
primitives) libraries as well as the availability of Tensor Cores at the hardware level on
Nvidia’s GPUs. Usage of Pytorch 2.0+ with CUDA requires the availability of an Nvidia
GPU with the relevant compute capability (CC), the CUDA Toolkit and the associated
Graphics Drivers. Conveniently, Google Colab provides the researcher with a plug-and-
play experience to run the Pytorch 2.0+ code on a GPU thanks to the availability of the
GPU-T4 environment.

The core functionality of these Deep Learning frameworks is to allow us to cast our dy-
namic programming problem into a differentiable computational graph where the deriva-
tives of the loss / objective function with respect to the Neural Network parameters can be
computed. This allows us to find the optimal ©* such that the attained discounted sum of
profits by the firms is the highest and the local labour markets clear as tightly as possible.

7.B Hyperparameter tuning (Algorithmic and Architectural)

A key margin for the reproducibility of Deep Learning applications is the choice for the
hyperparameters that govern the underlying training process. These include, for example,
the learning rates, batch sizes, hidden layer activation functions, ... Table (7.1) provides

®Tensorflow requires employing the WSL 2 (Windows Subsystem for Linux) in order to utilize the local
GPU.

’CUDA (Compute Unified Device Architecture) is Nvidia’s propietary GPU parallel computing platform.

8MPS (Metal Performance Shaders) is Apple’s propietary framework for GPU accelerated computing.
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the entire set of hyperparameters in our implementation.

Regarding the structure of the Neural Networks, we opt for relatively shallow NNs
of 2 layers and 32 neurons each. This is comparable to the choice in the original paper
Han et al. (2021) and is the traditionally employed depth in reinforcement learning. We
employ a ReLU hidden layers given that their gradients do not saturate and favour spar-
sity. Regarding the output layers, since our policy function outputs (wages, capitals) are
constrained to be on z € (0, c0) we employ a Softplus output function which matches this
range, and whose gradients don’t saturate.

As for the optimizer, we employ Pytorch’s Adam. Compared to a vanilla SGD, Adam
exploits the advantages from momentum 3, and adaptive learning rates /3,. Since it com-
putes these moments at a per-parameter basis, it organically controls for gradient magni-

tudes across layers and parameters.

7.C Validation of the Methodology

To test and validate the accuracy of the proposed solution method and hyperparameter
tuning, we compare the ergodic distribution of both the flood preventing and production
capitals against a standard grid-based solution.

To isolate the price learning rule, which we can not disentangle from the NN policy
functions, we focus on a stationary version of the model without flood risk. While re-
strictive, note that from the perspective of the DeepHAM methodology, aggregate states
are just an additional dimension on which to learn the optimal policy functions, therefore
there is no fundamental difference in the learning process for the stationary economy rela-
tive to the one under aggregate uncertainty, which is an added benefit of the methodology.

We keep the calibration exactly the same as in (2), the only exception being that we
shut down the aggregate flood uncertainty. The results from both methodologies (Deep
Learning and Traditional Grid-based) are provided in figure (7.1).

The Deep Learning methodology’s solution attains two key merits. First, it properly
predicts that investment in the flood preventing capital will be zero in the steady-state
economy without flood risk. Second, it is able to replicate the solution attained through
standard grid-based solution method for the case of the production capital. This is a robust
test given that it is not possible to replicate the ergodic distribution over individual states
unless the policy function is accurate over the entire domain.

Therefore, while not exhaustive, this first validation exercise provides reassurance that
the employed methodology is sensible and can replicate those attained through standard

methods.
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Table 7.1: Set of hyperparameters and state space in the Model’s Deep Learning Han et al. (2021) imple-
mentation.

Hyperparameter / State Space Definition Value

Neural Network Architecture

L Layers per NN (depth) 2
N Neurons per Layer (width) 32
o() Hidden Layers Activation Function RELU, max(0, x)
wnn(©)s( Wage PF Output Layer Softplus, log(1 + exp®)
knn(©)s0 Production Capital PF Output Layer Softplus log(1 + exp(x))
ki (©)s0) Flood Preventing Capital PF Output Layer Softplus log(1 + exp(z))
Van(©)o0) Value Function Output Layer Linear z
Optimizer Settings
Opt Optimizer Adam, AdamW
Ir Learning Rate le — 3 (PF) and 1e — 4 (VF)
By, B2 Momentum and Variance of Gradients Parameters (0.99,0.999)

Training Settings (DeepHAM)

Es Batch size step 3 150
E, Batch size step 2 500
Ey Batch size step 1 1
€ Steps training step 2 3000
es Steps tranining step 3 75
€outer DeepHAM Steps (1+2+3) 100

Step 1 Details

tourn—in Burn-in period simulation 7000
T Periods Simulated 10000
Step 2 Details
T, Periods simulation for Terminal Value 600
Step 3 details
Ty Periods simulation Computational Graph 150
State Space
0 Location
1 Idiosyncratic Productivity
2 Flood Preventing Capital &/
3 Production Capital &
4 Flood Status Safe Region
5 Flood Status Risky Region
6 Aggregate Flood Preventing Capital, Safe Region
7 Aggregate Flood Preventing Capital, Risky Region
8 Aggregate Production Capital, Safe Region
9 Aggregate Production Capital, Risky Region
10 Std. Flood Preventing Capital, Safe Region
11 Std. Flood Preventing Capital, Risky Region
12 Std. Production Capital, Safe Region
13 Std. Production Capital, Risky Region
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Figure 7.1: Ergodic Distributions of Flood Preventing and Production Capitals under both methodologies.

Validation: Steady-State Firm Capital Distribution by Region and Type
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Notes: Steady-state distributions of flood preventing capital (top row) and production capital (bottom row).
The bottom row shows the results under standard grid-based methods (VFI, orange) and DeepHAM (blue).

7.D Lower Marginal Benefit from Investing in the Flood Preventing
Capital F'(k7)
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Figure 7.2: Ergodic Distributions of Production and Flood Preventing Capitals under Lower Marginal Ben-
efits F' (k%)

Firm Capital Distribution by Region and Type
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Notes: The Safe Region has a Flood Probability of 6%, while the Risky Region has a 14% probability. The left
column contains the data for the Safe Region while the right column contains the data for the Risky Region.
The top row shows the Flood Preventing Capital &/ distribution while the bottom one shows the one for the
Production Capital k. The parameteric form for the F(k/) function is now 1 — exp(—z%9)
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Figure 7.3: IRFs under Lower Marginal Benefits F’ (k)
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Notes: Obtained IRFs as a response to a Flood Shock averaged across 1000 starting conditions. The x-axis
shows the time horizon, which is set to quarters, and is 1-indexed. The y-axis shows the percentage deviation
(%) w.r.t. the risky steady-state. The left column shows the IRFs for the Safe Region, while the right one
does so for the Risky Region. Both Capitals are the beginning of period ones.
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